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Abstract 

In this paper, we argue that the key to the success of the current state-of-art statistical 
learning algorithms for Chinese word segmentation (CWS) mostly lies in their optimal 
weighting of non-overlapping distributional evidence in the corpora. The utilization of 
distributional evidence is more essential than the learning algorithm. We further analyze 
the characteristics of distributional evidence for CWS, under the framework of Zipf’s law 
and summarize the limitation of statistical learning in CWS as the feature absence 
problem, which may be apparent yet usually neglected. Making a connection between 
theoretical/empirical linguistics and CWS, we suggest that the study and development of a 
generative word formation system may be beneficial for both the science and engineering 
of CWS. We wrap up the discussion after reviewing some recent works that are already on 
this line. 

1 Introduction 

Tokens in general, words are considered as building blocks of linguistic structures of 
human languages and basic inputs for natural language processing (Webster and Kit 
1992). In many Asian languages, including Chinese, sentences are written as character 
sequences without explicit word delimiters, thus tokenization or word segmentation 
remains a key research topic in language processing for these languages. 
    The most popular model among modern word segmenters is probably character position 
tagging (Xue, 2003), which views word segmentation as labeling the positional roles that 
character plays within words, using labels such as Beginning, Middle, Ending and 
Singleton.  Under such formulation, Chinese word segmentation (CWS) becomes a 
special case of sequence labeling problem, which can be effectively solved by machine 
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learning techniques such as conditional random fields (Lafferty et al., 2001), which 
achieves state-of-art results for CWS. 

In recent years, the performance of machine learning based segmenters has been 
further pushed forward by model combination (Wang et al., 2010; Sun, 2010), utilizing 
unsupervised segmentation on unlabelled data (Zhao and Kit, 2008; Sun and Jia, 2011), 
jointly learning segmentation and POS tagging (Jiang et al., 2008; Zhang and Clark, 2008; 
Sun, 2011), etc. On the other hand, it appears that out-of-vocabulary words (OOV) remain 
a major challenge even for these sophisticated systems. Given this background, our paper 
attempts to analyze both successes and limitations of machine learning approaches to 
CWS, in the hope of bringing new understandings and inspiring novel methods. 

First of all, what types of evidence (information/feature) are most important for any 
segmenter? The most intuitive choice is lexical forms, which have been extensively used 
by early systems in the form of dictionary or token functions (e.g. frequency). However, 
as lexical forms are incapable of describing morphological behaviors of characters, it fails 
to contribute to recognition of OOV, which exist as a result of dynamic and productive 
word formation in Chinese. It turns out that character information alone provide adequate 
information for describing both IV (in-vocabulary words) and OOV, suggested by the 
success of various character position tagging systems. Specifically, such systems mostly 
rely on character distributional evidence, i.e. characters and character co-occurrences in 
different positions of words or word sequences.   

  Another important question is what role machine learning algorithms play. It might 
seem that the machine learning algorithm is a black box where magic happens, i.e. 
machine learning should get all the credit for the improvement over the well established 
baseline of maximum matching (Liang, 1986). But this needs more careful examination. 
We show in section 3 that the role of machine learning in CWS systems can be better 
described as feature weight optimization. 

One implication of above mentioned issues is that despite different strategies for 
feature weight optimization, the performance of virtually all the current machine learning 
based segmenter are bounded by what can be expressed by character distributional 
evidence. Like many other linguistics phenomena, the character ngram distribution is 
characterized by Zipf’s law (Zipf, 1949), which states that relatively few items are very 
frequent while most items are rare. Given Zipf’s law, the distributional features that we 
have acquired from the training corpus are likely to cover only a subset of distributional 
features of the testing corpus, as some of rare features may only appear in either corpus 
but not both. This is consistent with our empirical study of distributional evidence and is 
exactly the problem for recognizing OOV. So the real challenge in CWS is that the 
distributional evidence for some characters in OOV is at least partly unavailable, where 
algorithmic predictions yield only low accurate guessing.  

Similar to the limitation of machine learning in CWS, Yang (2011) suggests that 
usage/item-based theory in language acquisition (Tomasello, 2000; Hay and Baayen, 
2005) has drawbacks on modeling the empirical data, also because of the Zipf’s law. The 
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generative linguistic system, on the other hand, is consistent with the language acquisition 
data.  Interestingly, recent development of Chinese morphology, such as Packard (2000) 
and Xue (2001) also argues that it is attractive to describe word formation in Chinese 
using generative rules with part-of-speech like tags. These theoretical advancements shed 
light on new paths to solving the OOV problem in word segmentation with generative 
word formation models. Our discussion finishes by summarizing some pilot work that are 
already in this direction, including work of the current authors. 

2 Distributional Evidence for CWS 

Early work in CWS extensively use lexical forms as the main information source. In 
maximum matching, sentence substrings that match lexical entries in the dictionary are 
selected as word candidates and the disambiguation of conflicting segmentations are 
achieved in a greedy search way. In finite state methods for CWS such as Sproat et al. 
(1996), lexicon is represented as weighted finite state machines and the segmentation 
disambiguation is based on scores of individual lexical item given by the finite state 
machine, which is mostly trained from word frequency statistics. But the rise of character 
position tagging approach to CWS shows that the lexical information is neither necessary 
nor adequate for the building accurate CWS systems. On one hand, various systems 
mainly using character distribution information (Xue, 2003; Peng et al., 2004) have 
similar results on IVs compared with word-based systems. On the other hand, character 
position tagging systems have very strong power on OOV recognition, which word-based 
systems basically fail to do.   
    Note that even for recent discriminative learning powered word-based segmenters 
(Zhang and Clark, 2008) that have state-of-art performances, character level features have 
been widely integrated. Actually, while it is hard to imagine how OOV can be properly 
modeled if all the character information is removed, discarding all lexical information 
may just end up with a system somewhat similar to a character tagging system. 

2.1 Character Features that matter 

In fact, lexical forms can be viewed as a special case of character distributional 
information, as the lexicon is a set of character sequences (co-occurrences).  Some of the 
most useful character features proposed in Xue (2003) are following: 

• Character unigrams: Cs  (i-2<s<i+2) 
• Character bigrams: Cs Cs+1 (i-2<s<i+2) 
• Tag unigrams: Ts (s=i-1, i-2) 

, where C represents a character, T represents a tag, s denotes the position index of the 
character string and i denotes the position of the current character of interest.  

It can be seen that besides the interactions with character position tags, features are 
basically character co-occurrences. This feature set has been widely adopted in many 
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latter systems, complemented by extra features such as punctuation, date, digit and letter, 
tone, etc. (Zhao et al., 2006). But it is fair to say the improvement brought by extra 
features is useful yet marginal. 

2.2 The minority rules 

It is not adequate to know that character distributional evidence is the dominant 
information for segmentation. As features do not necessarily contribute equally to the 
task, it is more interesting to examine how different features influence  the segmentation. 
Feature pruning provides a good perspective to understanding the contributions of 
individual features. If some features are pruned without significantly hurting the 
performance, these features may be less crucial or at least redundant with regard to the 
remaining features. Zhao & Kit (2009) have proposed a simple and efficient model 
pruning method for conditional random fields. A closer look at their experiments results 
on CRF based CWS helps us better understand the roles that different features play. The 
general message is that standard features as mentioned in previous section are highly 
redundant. According to their report, the model that uses only 2% of total number of 
features that have survived the pruning process can still reach above 97% of the accuracy 
of that which can be accomplished with the full feature set. Moreover, no performance 
loss occurs at all until the pruning rate is larger than 65%. In other words, a few features 
contribute a great deal to the performance of the current state-of-the art system.  
    Researchers have also found similar patterns on other sequence labeling tasks such as 
named entity recognition and chunking as well (Goldberg & Elhadad, 2009). It has shown 
that accurate models for these tasks can be learned from a heavily pruned feature space, 
which contains less than 1% of the features in the training set. In their experiments it turns 
out that rare features are used for ruling out uncertain cases by the machine learning 
algorithm rather than learning useful generalizations. We speculate that this conclusion 
might also be true for CWS task and we will further discuss the characteristics of the 
distribution of character ngram features in section 4.   

3 The Role of Machine Learning 

The Chinese language processing community has witnessed a dramatic performance 
boom of CWS systems since the introduction of machine learning algorithms under the 
character position tagging framework. It appears that machine learning is the black box 
where magic happens, as there is a huge gap between the state-of-the-art machine learning 
systems and the traditional dictionary-based greedy search baseline maximum matching. 
However, since most machine learning based systems dominantly rely on character 
distributional evidence, one may wonder whether the character distributional evidence 
within the framework of character position tagging should be given more credit that they 
have deserved. Our preliminary study has also shown that it is possible to achieve more 
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than half of the error reduction on OOV recognition that the-state-of-art methods can 
achieve, by a simple combination of distributional evidence.  

    The re-examination of the role of machine learning in CWS is useful for a thorough 
understanding on how machine learning contributes to this task. To simplify the 
discussion, we restrict ourselves to log linear family of learning algorithms, i.e. maximum 
entropy, CRF, etc.  These algorithms combine the features in a linear way and the learning 
process is reduced to the estimation of feature weights. But the argument should also hold 
for other algorithms, such as artificial neural networks, the only difference of which in 
this context is that there are hidden nodes that represents non-linear combinations of 
features. In either case, what machine learning can do is to optimize the weights for 
features using different strategies. Thus the role of machine learning can be summarized 
as feature weight optimization.  This understanding is important as one should distinguish 
the challenge in optimization for a given the feature space and the inherent problems of 
feature space itself. As we will show later sections, this links closely to the limitations of 
machine learning approaches to CWS and calls for new perspective of looking at CWS. 

4 The Zipfian Distribution of Distributional Evidence 

4.1 The feature absence problem of OOVs 

OOVs are considered to be the major error source in the state-of-the-art machine 
learning based CWS systems. While those systems can achieve accuracy (F-score) over 
95% on treebank corpora, their recall on OOVs are typically only around 70% (Emerson, 
2005; Levow, 2006; Zhao and Liu, 2010). In order to illustrate the main problems of 
machine learning approaches to CWS, we have conducted an empirical study on those 
OOVs that the modern CWS systems fail to recognize. We are particularly interested in 
whether those errors are caused by feature weight optimization problems, or the inherent 
problems of the feature space itself.  

    The study is based on Penn Chinese Treebank version 5 (Xue et al., 2005), which is 
manually word-segmented. We trained a CRF based segmenter on 75% of the corpus and 
use the model to segment the remaining 25%. Those words only occur in the training 
section but not the testing section are considered as OOVs. The OOV rate is about 9% in 
this set-up. We use a simplified version of feature template proposed in Xue (2003) for 
training, namely only current characters (C0), current and previous characters (C-1C0, 
denoted as B1) as well as current and next characters (C0C1, denoted as B2), i.e. unigrams 
and left/right bigrams. This choice is for the purpose of concentrating on the dominant 
factors and simplifying the discussion, given the fact that those features contribute more 
than 98% of the overall accuracy and 95% of OOV recall on this corpus.       

    One observation about those error-causing OOVs has drawn our attention. Among 
all character instances, 
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• 1.6% have C0 feature unseen and thus B1 and B2 feature unseen in the training 
corpus (Type I);  

• 29.2% have only C0 feature seen, but both B1 and B2 features are unseen (Type 
II); 

• 36.2% have and only have one of the bigram features unseen, i.e. either B1 and 
B2 is unseen (Type III). 

In other words, 67% of character instances have at least one of the features B1 and B2 
unseen from the training corpus, while only 23% of character instances have both B1 and 
B2 seen in the training corpus. 

    We may call this phenomenon as the feature absence problem. Type I is apparently 
fatal for any meaningful prediction, as there is not any feature at all for the model to 
utilize. Type II is also disastrous for a sensible prediction, as the unigram feature C0 alone 
could hardly determine the label or the role of the character correctly. In Chinese, the 
majority of character may occur in any position of a word, i.e. its label can be either Start, 
Middle, End or Singleton, except for a few characters which have dominant roles such as 
prefix (e.g. 非, ‘not/non’, 反 ‘anti’) or suffix (e.g. 者 ‘one who does or is ...’, 化 a 
verbalizing suffix). Note that even for these characters, there are ambiguities as for the 
role in a word, e.g.  非 can be the end of a word as in 是非 ‘right and wrong/quarrel’.  

    Character instances in Type III have a better chance of being correctly labeled by the 
model but relying only on the bigram context on one side is likely to be of high bias in the 
first place, and it might be the case that the bigram context on  “the other side” is more 
informative than the one that are seen in the training corpus. Moreover, the association of 
a certain character co-occurrence with a certain label in the training corpus might also be 
merely by chance, especially for those co-occurrences that are less frequent in the training 
corpus. Finally, the statistics here is with regard to characters, and we need be aware that 
the recognition of an OOV fails even if only one the character is incorrectly labeled, 
which means this 67% feature absence case may explain a much higher percentage of 
OOV tokens that are not recognized. 

    It is clear that the issue above is an inherent problem of the feature space and is out 
of reach for the clever optimizations offered by machine learning algorithms. To illustrate 
this, we fit the discussion in an abstract view of classification algorithms in machine 
learning. The model can be viewed as hyper planes that separate the feature space, in 
which the training instances are dots. The separation should be made in such as a way that 
instances of the same class are in the same subspace, if noise are not taken into account. 
The prediction or testing process is fairly straightforward once these hyper planes are 
determined in the training process. For an new/unseen instance, its features corresponds to 
coordinates of dimensions in the space, once the coordinates are determined, the instance 
fits an area, preferably a dot, in the space separated by the model. The subspace that the 
instance falls in defines its label. However, the situation in the feature absence problem is 
that very few, or in extreme cases, no coordinates are given for the new instance in testing 
data, thus the area in the space determined by these coordinates are so vast that they may 
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cross the boundaries of the hyper planes. In this case, one would not be able to tell which 
subspace or class that instance belongs to. Of course, sequence labeling is more 
complicated than classification, but the above argument also holds. 

4.2 Zipf’s law and its implications 

The problem seems to be that our training corpus is too small to contain all the bigram 
co-occurrences that occur in the testing corpus. So can we simply enlarge our training 
corpus to solve this problem? Unfortunately, there are two factors that make this proposal 
less appealing as at the first glance. Firstly, the training corpus is obtained via human 
annotations, which are expensive. Secondly, empirical study shows that the scale of 
corpus that we need to capture enough features grows at an exponential rate with regard to 
the number of distinct features (Zhao et al., 2010). The second factor is determined by the 
Zipf’s law (Zipf, 1949), which widely applicable to linguistics data and empirical 
distributions in many other areas. 

    Zipf’s law states that the frequency of an item (character, word, bigram, etc.) is 
approximately equal to the inverse of its rank in frequency, which can be expressed by the 
following formula: 

 
                                  f = C/r                                (1) 

, where C is some constant, f is the frequency of the item and r is its rank of frequency in 
the set of the item. A perfect Zipfian distribution would be a straight line of slope -1, with 
the axes being log of word frequency and the log of word rank. The empirical usually 
have minor deviation from the perfect scenario (Figure 1). There are many vocabulary 
studies that report Zipf’s law in various language and genres (Baroni, 2008). The 
distribution of Chinese characters ngrams and word ngrams are of no exception. 

                             
                       Figure 1: A Zifp’s law curve of word frequency 
   
  One immediate implication is that only a small percentage of items occur very 

frequently while the majority of items occur very rarely (in extreme but common cases, 
the frequency equals to 1) in real texts. On the word level, Zipf’s law suggests that given a 
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relatively small sample of the sentences in a language such as a treebank corpus, most 
words are so rare that they are likely to occur in either training section or testing section 
but not both, which explains why OOVs occur in the first place. 

On the character level, Zipf’s law means that most character co-occurrences are so rare 
that they occur either in training or testing corpus but not both and only a few character 
co-occurrences are so frequent that they are likely to occur in both corpus. This explains 
why very heavy feature pruning works, as a small subset of all character co-occurrence 
types take account for the most co-occurrence tokens. In short, the feature absence 
problem is a rule rather than an exception. 

Another interpretation of Zipf’s law is that it predicts how large a corpus is needed to 
cover a certain number of distinct word/character ngrams. The general idea is that since a 
few items occur very frequently, a new non-frequent item will only appear after seeing 
many occurrences of these frequent items. Mathematically, the sum of all relative 
frequencies in a Zipf distribution is equal to the harmonic series and therefore: 

                                                      (2) 
This formula states that series gets arbitrarily large as n becomes larger, which suggests 

that exponential more tokens have to occur before more distinct types are encountered. 
This has been confirmed by empirical study (Zhao et al., 2010) as well. The bad news is 
that even though the scale of commonly seen Chinese characters is only at thousands. The 
word formation process that combines characters is very dynamic and productive. Even if 
we only consider words that are made of two characters, the upper bound of number of 
extinct types is 106 (103×103). Although the actual number of distinct two-character words 
is far smaller than the upper bound, the scale of annotated corpus needed to solve the data 
sparseness problem is still tremendous. Given the inevitable presence of the feature 
absence problem, which is governed by Zipf’s law, the efforts on solving the OOV 
recognition problem by applying stronger machine learning algorithms or smarter system 
combination are beneficial yet seem to aim only at the tip of the iceberg. 

5 Relevance to Language Acquisition 

Before we move to the discussion of possible solutions of the OOV recognition 
problem, let us first examine an interesting connection between the limitation of feature-
based machine learning approaches to CWS and the drawbacks of the item-based 
approach to language acquisition.  

Since Chomsky (1965), linguists have been aware of the distinction between 
competence and performance, which suggests that it is limited to draw conclusions only 
from observed linguistic data. For example, some words have never been said but are 
nevertheless grammatically correct. This distinction has also been widely accepted in the 
subfield of language acquisition, even by researchers that do not follow the generative 
grammar. However, this idea has been recently challenged by the item or usage based 
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theory of language acquisition (Tomasello, 2000; Hay & Baayen 2005, etc). The item-
based approach states that language acquisition can be achieved by memorizing and 
operating specific schemas of linguistic forms and constructions, in contrast with the 
traditional thought of learning grammar rules that consist a productive/generative 
linguistic system.  

Note that the claim of the item-based approach to language acquisition is similar to the 
feature-based machine learning approaches to CWS at an abstract level. Both approaches 
build models using specific surface linguistic forms and their co-occurrences and the 
model retrieves such stored “pairings of form and functions”  to do the production or 
recognition,  although the models in the former do not necessarily of statistical nature as 
those in the latter do.  

Interestingly, the generative school fights back (Young 2011) and argues that there are 
some inherent limitations in the item-based approach, as Zipfian distribution determines 
that most “pairings of form and functions” will never be heard and even for those do 
occur may be so infrequent that the storage of usage of such pairings is not reliable. 
Further empirical study has shown that the item- based approach is not supported by 
statistical evidence in language acquisition data. On the contrary, generative grammars are 
consistent with empirical data, based on a model that considers the interaction of Zipfian 
distribution and the combinations of linguistic items.  

While CWS is a different domain than language acquisition, the arguments here may 
still provide a hint on understanding the OOV problem. It is likely that the Zipfian nature 
of character/word ngram distributions ensures that the overlap of these surface form co-
occurrence based features in training and testing corpus of CWS systems are quite low by 
type unless the corpus size is very large, which unfortunately requires an exponential 
growth of the size of the annotated corpus. And the consistency of empirical data with 
generative grammars that have been observed in language acquisition case studies may 
also hold in the word formation process of Chinese, which implies an alternative 
formalism for solving CWS problem in general and OOV problem in particular. 

6 Generative Word Formation Model 

The idea that word formation in Chinese is an generative system is reasonable in both 
language acquisition and theoretical linguistics. This Morphology of Chinese, which is 
represented by early works such as (Zhao, 1968; Lü, 1979) and more recent work in the 
framework of generative linguistics such as (Huang, 1984; Dai, 1992; Duanmu, 1997; 
Packard, 2000; Xue, 2001).  

    Dai (1992) introduced the idea that different notations of wordhood co-exist, 
including morphological word, syntactic word and phonological word. The interactions 
between them explain various word formation phenomena. But his model is basically a 
static lexicon, which does not provide a concrete proposal on how morphological words 
are derived. 
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    Packard (2000) is probably the most influential modern work, which treats the 
morphology as an extension of syntax below the word (X0) level, following the thinking 
of Selkirk (1982).  Packard (2000) is based on the “form class description”, which assigns 
words and their components (characters) part-of-speech like tags called form class.  He 
has also suggested so called “Headness Principle”, which states that nouns have nominal 
components (characters) on the right and verbs have verbal components (characters) on 
the left. Like Dai (1992), Packard (2000) also fits into a lexicalism framework, and 
considers both morphemes and complex words with their “precompiled” morphological 
structures in the lexicon, except for complex words containing grammatical affixes. 

    In contrast, Xue (2001) have proposed a system that derives virtually all the complex 
words using syntax rules or in the morphology module after syntactic analysis, following 
the theory of distributed morphology (Halle & Marantz 1993, 1994). The boundary of 
syntax and morphology further blurred and the operation scope of syntax rules expand to 
most parts of the morphology.  

    Despite the disagreements, both Packard (2000) and Xue (2001) agree that part-of-
speech like tags for characters and words and syntactic or morphological rules that 
describe the derivation of these tags make essential parts of a generative word formation 
system for Chinese. Computational linguists have started rethinking the limitations of 
feature based machine learning approach for CWS and has called for morphology-based 
analysis of OOVs (Dong et al., 2010). Furthermore, there are already pilot works in this 
direction, such as Zhao (2009), Li (2011) and Ma et al. (2012). Both methods happen to 
be formulated as learning a joint model for segmentation and parsing, which has certain 
practical advantages, but is not necessary for learning a word formation model. 

    Zhao (2009) has proposed a character-based dependency parsing model, in which the 
word formation is formulated as the in-word character dependencies, without any part-of-
speech tags or dependency labels. The dependency model has comparable performance on 
the CWS task as the state-of-the art sequence labeling based segmenters. While it is an 
interesting investigation, pure character-wise dependencies seem to be inadequate to 
model the word formation process in a general and productive manner.  

    Li (2011) has proposed a unified parsing model that can parse both word structures 
and phrase structures. Part-of-speech tags and constituent labels are utilized in this model. 
The model extends probabilistic context free grammar based constituent parsing to handle 
the inner structure of words, which has a flavor of generative word formation model, i.e. 
syntactic rules are used to analyze the word formation process. The performance of this 
model on CWS task is slightly better than the state-of-the-art but no significant 
improvement on OOV recognition has been reported. Note that this work makes a 
distinction between flat words and non-flat words and the grammar model only deals with 
the generation of the non-flat words. Here the non-flat words are defined as those words 
that contain productive suffix and/or prefix, which is only a small subset of words that can 
be possibly analyzed by syntactic or morphological rules. In this sense, Li (2011) can be 
viewed as an implementation of Packard (2000). The model’s low coverage of the word 
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formation phenomena may explain why this model has not brought advancement on OOV 
recognition. The morphological model might be more powerful on OOV recognition, if 
syntax-like rules were used to analyze most of, rather than a small portion of, complex 
words, i.e. by implementing Xue (2001). Nevertheless, the results presented in Li (2011) 
are encouraging, as it has shown the effectiveness of analyzing word formation using 
generative rules. Note that Li (2011) follows a standard paradigm in modern syntactic 
parsing: the probabilistic syntax model that is used for parsing is learned from an 
annotated treebank. So far, we have also limited our discussion to this default. 

Ma et al. (2012) have proposed a semi-automatic approach to Chinese word structure 
annotation. They have argued that Li (2011) only annotated affixations, which only 
covered 35% of word types in the corpus and was insufficient to deal with the OOV 
problem. In contrast, their annotation has covered more morphological phenomena, 
including compounding, which is a more popular word formation process in Chinese. 
Unfortunate, the usefulness of such annotation for the OOV problem has not been 
validated by experiments yet. 

 One may wonder whether it is possible to have such a strong machine learning 
algorithm that can overcome the limitations of current learning algorithms used in CWS 
and effectively induce the word structure without the explicit notion of word formation 
model and the utilization of manual treebank annotation. This turns out to be quite a 
difficult task, and the current computational learning research under the framework of 
Probably Approximately Correct (PAC, Valiant, 1984) suggests that it is virtually 
impossible to learn languages such as finite state and context free language, given only 
distribution of surface forms (Yang, 2011). But learnability results are in a general sense 
and can be modified, e.g. adding certain assumptions, to suit various learning scenario, 
which is an interesting topic itself. 

7 Conclusion  

    In this paper, we have reviewed some state-of-art methods for Chinese word 
segmentation, with a focus on the role of distributional evidence and feature-based 
machine learning algorithms. By showing the Zipfian nature of the distributional 
evidence, we have further investigated the limitations of feature-based statistical machine 
learning models for CWS, which can be summarized as the feature absence 
problem.  Drawing the connection with language acquisition literature, we have 
speculated that a generative linguistic system may help overcome the limitations of 
current methods. This speculation is supported by some formal linguistic analysis of 
Chinese morphology. Finally, we have shown that recent results in relevant computational 
modeling suggests that it is indeed a promising direction to investigate generative word 
formation models in order to come up with better CWS system. 
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